3.1.65 \(\int \frac {x^2}{\sqrt {a+c x^2} (d+e x+f x^2)} \, dx\) [65]

3.1.65.1 Optimal result
3.1.65.2 Mathematica [C] (verified)
3.1.65.3 Rubi [A] (verified)
3.1.65.4 Maple [B] (verified)
3.1.65.5 Fricas [F(-1)]
3.1.65.6 Sympy [F]
3.1.65.7 Maxima [F(-2)]
3.1.65.8 Giac [F(-2)]
3.1.65.9 Mupad [F(-1)]

3.1.65.1 Optimal result

Integrand size = 27, antiderivative size = 344 \[ \int \frac {x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} f}-\frac {\left (e^2-2 d f-e \sqrt {e^2-4 d f}\right ) \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}-\frac {\left (2 d f-e \left (e+\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} f \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}} \]

output
arctanh(x*c^(1/2)/(c*x^2+a)^(1/2))/f/c^(1/2)-1/2*arctanh(1/2*(2*a*f-c*x*(e 
-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4* 
d*f+e^2)^(1/2)))^(1/2))*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2))/f*2^(1/2)/(-4*d*f 
+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)-1/2*arctanh 
(1/2*(2*a*f-c*x*(e+(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c 
*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2))*(2*d*f-e*(e+(-4*d*f+e^2)^(1/2))) 
/f*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2))) 
^(1/2)
 
3.1.65.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.36 (sec) , antiderivative size = 261, normalized size of antiderivative = 0.76 \[ \int \frac {x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\frac {\frac {2 \text {arctanh}\left (\frac {\sqrt {c} x}{-\sqrt {a}+\sqrt {a+c x^2}}\right )}{\sqrt {c}}+\text {RootSum}\left [c^2 d+2 \sqrt {a} c e \text {$\#$1}-2 c d \text {$\#$1}^2+4 a f \text {$\#$1}^2-2 \sqrt {a} e \text {$\#$1}^3+d \text {$\#$1}^4\&,\frac {-c d \log (x)+c d \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right )-2 \sqrt {a} e \log (x) \text {$\#$1}+2 \sqrt {a} e \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}+d \log (x) \text {$\#$1}^2-d \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2}{-\sqrt {a} c e+2 c d \text {$\#$1}-4 a f \text {$\#$1}+3 \sqrt {a} e \text {$\#$1}^2-2 d \text {$\#$1}^3}\&\right ]}{f} \]

input
Integrate[x^2/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 
output
((2*ArcTanh[(Sqrt[c]*x)/(-Sqrt[a] + Sqrt[a + c*x^2])])/Sqrt[c] + RootSum[c 
^2*d + 2*Sqrt[a]*c*e*#1 - 2*c*d*#1^2 + 4*a*f*#1^2 - 2*Sqrt[a]*e*#1^3 + d*# 
1^4 & , (-(c*d*Log[x]) + c*d*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1] - 2*Sq 
rt[a]*e*Log[x]*#1 + 2*Sqrt[a]*e*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1]*#1 
+ d*Log[x]*#1^2 - d*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1]*#1^2)/(-(Sqrt[a 
]*c*e) + 2*c*d*#1 - 4*a*f*#1 + 3*Sqrt[a]*e*#1^2 - 2*d*#1^3) & ])/f
 
3.1.65.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 342, normalized size of antiderivative = 0.99, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {2145, 25, 224, 219, 1367, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx\)

\(\Big \downarrow \) 2145

\(\displaystyle \frac {\int -\frac {d+e x}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{f}+\frac {\int \frac {1}{\sqrt {c x^2+a}}dx}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {1}{\sqrt {c x^2+a}}dx}{f}-\frac {\int \frac {d+e x}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\int \frac {1}{1-\frac {c x^2}{c x^2+a}}d\frac {x}{\sqrt {c x^2+a}}}{f}-\frac {\int \frac {d+e x}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} f}-\frac {\int \frac {d+e x}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{f}\)

\(\Big \downarrow \) 1367

\(\displaystyle \frac {\text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} f}-\frac {-\frac {\left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \int \frac {1}{\left (e+2 f x-\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+a}}dx}{\sqrt {e^2-4 d f}}-\frac {\left (2 d f-e \left (\sqrt {e^2-4 d f}+e\right )\right ) \int \frac {1}{\left (e+2 f x+\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+a}}dx}{\sqrt {e^2-4 d f}}}{f}\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {\text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} f}-\frac {\frac {\left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-\frac {\left (2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x\right )^2}{c x^2+a}}d\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {c x^2+a}}}{\sqrt {e^2-4 d f}}+\frac {\left (2 d f-e \left (\sqrt {e^2-4 d f}+e\right )\right ) \int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-\frac {\left (2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x\right )^2}{c x^2+a}}d\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {c x^2+a}}}{\sqrt {e^2-4 d f}}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{\sqrt {c} f}-\frac {\frac {\left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\left (2 d f-e \left (\sqrt {e^2-4 d f}+e\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}}{f}\)

input
Int[x^2/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)),x]
 
output
ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]]/(Sqrt[c]*f) - (((e^2 - 2*d*f - e*Sqrt 
[e^2 - 4*d*f])*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt 
[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt 
[2]*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f]) 
]) + ((2*d*f - e*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 
 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f] 
)]*Sqrt[a + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2 
*d*f + e*Sqrt[e^2 - 4*d*f])]))/f
 

3.1.65.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 1367
Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f 
_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*c*g - h*( 
b - q))/q   Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Simp[(2*c*g - 
 h*(b + q))/q   Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{ 
a, b, c, d, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]
 

rule 2145
Int[(Px_)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (f_.)*(x_)^2]), 
x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, 
x, 2]}, Simp[C/c   Int[1/Sqrt[d + f*x^2], x], x] + Simp[1/c   Int[(A*c - a* 
C + (B*c - b*C)*x)/((a + b*x + c*x^2)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a 
, b, c, d, f}, x] && PolyQ[Px, x, 2]
 
3.1.65.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(662\) vs. \(2(300)=600\).

Time = 0.74 (sec) , antiderivative size = 663, normalized size of antiderivative = 1.93

method result size
default \(\frac {\ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right )}{f \sqrt {c}}-\frac {\left (-e \sqrt {-4 d f +e^{2}}+2 d f -e^{2}\right ) \sqrt {2}\, \ln \left (\frac {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{2 f^{2} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}-\frac {\left (e^{2}-2 d f -e \sqrt {-4 d f +e^{2}}\right ) \sqrt {2}\, \ln \left (\frac {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {-2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{2 f^{2} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}\) \(663\)

input
int(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/f*ln(x*c^(1/2)+(c*x^2+a)^(1/2))/c^(1/2)-1/2*(-e*(-4*d*f+e^2)^(1/2)+2*d*f 
-e^2)/f^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c* 
d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f 
^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2) 
*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+( 
-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e 
^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)) 
/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))-1/2*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2))/f^ 
2/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e 
^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*( 
e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)*((-( 
-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2/f*(-e+(- 
4*d*f+e^2)^(1/2)))^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e 
^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/ 
(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2))))
 
3.1.65.5 Fricas [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Timed out} \]

input
integrate(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.1.65.6 Sympy [F]

\[ \int \frac {x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {x^{2}}{\sqrt {a + c x^{2}} \left (d + e x + f x^{2}\right )}\, dx \]

input
integrate(x**2/(f*x**2+e*x+d)/(c*x**2+a)**(1/2),x)
 
output
Integral(x**2/(sqrt(a + c*x**2)*(d + e*x + f*x**2)), x)
 
3.1.65.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` for 
 more deta
 
3.1.65.8 Giac [F(-2)]

Exception generated. \[ \int \frac {x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: TypeError} \]

input
integrate(x^2/(f*x^2+e*x+d)/(c*x^2+a)^(1/2),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 
3.1.65.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx=\int \frac {x^2}{\sqrt {c\,x^2+a}\,\left (f\,x^2+e\,x+d\right )} \,d x \]

input
int(x^2/((a + c*x^2)^(1/2)*(d + e*x + f*x^2)),x)
 
output
int(x^2/((a + c*x^2)^(1/2)*(d + e*x + f*x^2)), x)